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Abstract

This paper describes an autonomous system that
performs closed loop control of a Differential Thermal
Analyzer(DTA) and a Gas Chromatograph (GC) in
order to identify minerals and organics in soil samples.
The system is presented as an instantiation of an in-
tegrated agent architecture designed to autonomously
control scientific equipment in remote locations.

We begin by describing the motivational contezt and
general requirements of our application. This is fol-
lowed by a description of the DTA-GC problem in
terms of specific requirements for integrated percep-
tion, analysis, planning and control. The nezt sections
present the AI techniques we are applying to each of
the specified requirements. Finally, we discuss the sys-
tem's implementation status, and evaluate the appli-
cation's effectiveness.

The original contributions of this work include a
general architecture that integrates perception, anal.
ysis, planning and control for scientific experiments.
For geochemists, we have contributed a new analy-
sis instrument that integrates two previously distinct
methods. The lessons imparted include issues at the
integration level as well as those relating to the indi-
vidual components.

AI Topic: Integrated architectures: planning, analysis,
perception and control
Domain Area: Thermochemical soil analysis
Language/Tool: Common Lisp, GPIB, C
Status: The system functions as a prototype. Further de-
velopment is required before completion.
Effort: 2 person years for the architecture, 2 person years
for the components.
Impact: A new soil analysis technique and a prototype
for autonomous control of scientific experiments.

1 Motivation

NASA missions often require that scientific exper-
iments be performed in remote or hostile environ-
ments such as interplanetary space or planetary sur-
faces. Even when humans are present in these loca-
tions, they are often too busy to perform lengthy sci-
ence experiments. This motivates the development

of systems that perform scientific experiments au-
tonomously. These systems must function without
human assistance in uncertain and changing environ-
ments, while facing limited resources such as time and
material. A higher-level executive would typically as-
sign such an automomous system to work on a specific
set of scientific goals for a specific period of time. In
a planetary rover setting for instance, the system may
need to complete the experiment before moving to a
new location. Such scenarios motivate the require-
ment that the system be able to perform experiments
within deadline limits. Our general problem can be de-
scribed as: Produce the best possible analysis results,
given a set of scientific goals and a time limit.

2 Application problem description
Our application addresses this requirement for "re-

mote science" at two levels. Our most specific and im-
mediate need is a system to autonomously control a
new geochemistry instrument that combines differen-
tial thermal analysis (DTA) with gas chromatography
(GC). Although the DTA and GC complement each
other naturally, they have never previously been con-
nected. This instrument is a prototype of a system
that could eventually perform autonomous soil analy-
sis on Mars. Our more general but equally important
need is to develop a general architecture that can be
applied to other kinds of scientific instruments. Specif-
ically, we are also automating an instrument called a
Bioreactor that controls the population density and
growth rate of a microbial culture, through regulation
of nutrients in a closed environment. Our application
addresses the specific requirements of the DTA-GC in-
strument while serving as an architectural model for
autonomous control of other scientific instruments.

The specific DTA-GC operational scenario can be
summarized as follows: in order to identify the min-
eral and organic composition of an unknown soil, a
soil sample is placed in the DTA oven along with an
inert "reference" soil. As the oven heats up, the DTA
records a voltage that indicates the temperature differ-
ence between the unknown soil and the reference soil.

A significant difference between the sample and the
reference temperatures indicates that the sample must
be undergoing ezothermic processes that produce heat



or endothermic processes that consume heat. Some
of these reactions also produce gas that is detected
through pressure sensors inside the oven, and sent to
the Gas Chromatograph. Proper identification of the
exothermic, endothermic and gas "events" for a given
soil can be used to produce hypotheses about what
minerals are present in the sample. The following sec-
tion motivates the use of AI techniques by further de-
scribing this problem in terms of requirements for sen-
sory perception, data analysis, planning and control.

3 AI requirements

This application requires sensory perception ca-
pabilities which we define as the ability to acquire in-
formation about the external world via sensors. The
system must interpret real-time DTA, GC and pres-
sure signals from the hardware sensors. These sensors
provide results in the form of voltage streams that
are typically plotted graphically and then visually in-
terpreted by humans. Since our system will be au-
tonomous, it needs some signal processing capabilities
for recognizing peak and valley features in the voltage
streams.

Our system must address a form of limited per-
ception since it never knows in advance which events
will be encountered during the heating process. This
uncertainty is compounded by signal/noise and fig-
ure/background discrimination issues. For instance, it
can be difficult to discriminate between a single valley
and two peaks. Thus, some heuristics are necessary to
bias such decisions.

This application requires data analysis capabil-
ities, which we define as any processing or reason-
ing over data that was acquired through sensory per-
ception. The result of DTA-GC analysis is a set of
hypotheses that postulate mineral combinations that
could be contained in the sample. When a single ob-
served event can be explained by two different miner-
als, multiple hypotheses will be produced. The result
is a set of competing hypotheses that represent an am-
biguous model of the unknown soil.

Since this is the first combined "DTA-GC _ system,
there are currently no experts on the analysis of this
combined data. However, experts in DTA often em-
ploy a variety of heuristic knowledge when they choose
between alternative hypotheses. We need to model the
expert's reasoning process using a high level language
so that the results will make sense to the scientists.
Optimally, the scientists should also be able to de-
velop and maintain the knowledge base themselves.
This need for a high-level knowledge-based represen-
tation combined with heuristic search are the typi-
cal motivations for expert system techniques. Since a
given observation may not perfectly match the gener-
alized mineral characterization in the library, the use
of probabilistic techniques is also motivated. Further,
belief revision techniques are motivated by our limited
perception in an uncertain world.

This application requires planning capabilities,
which we define as the ability to select actions by per-
forming "look ahead" or "predictive" search. Since the
soil sample and its environment are unknown, an ap-
propriate set of experiments cannot be fully designed

in advance. Therefore, the system must perform on-
line planning in order to design experiments based on
knowledge gained at the remote location. Also, since
competing hypotheses often exist and there is no hu-
man present, the system should autonomously take
actions aimed at clarifying ambiguities.

For example, consider a case where the first run in-
dicates only that gas evolved somewhere between the
temperatures of 200 and 700 degrees. The data analy-
sis results from that run could include two competing
hypotheses: one assuming the gas was produced at
300 degrees and another assuming it happened at 600
degrees. A simple follow-up experiment could be de-
signed to collect gas only between 100 and 400 degrees.
If the gas is detected only in that smaller interval, then
the second hypothesis will be thrown out.

The use of planning techniques is further motivated
by the need to contend with limited resources. The
system will not always have enough time or soil for a
complete second run. Therefore, the planner must rea-
son about resources in order to choose an appropriate
experiment design strategy.

For example, a complete experiment involves heat-
ing the sample up to 1200 degrees(C) at a rate of 10
degrees/minute, thus taking about two hours. If the
system has only one hour in which to clarify ambigu-
ities that occur at 1000 degrees, there would not be
enough time for a complete second run. The planner
could choose a strategy that uses a much faster heat-
ing rate to "skip" the first 900 degrees, slowing down
to the desired 10 degrees/minute for data collection in
the critical section. When there is not even enough
time or soil for a partial second run, the planner may
choose between strategies that modify the current ex-
periment and those that clarify the results without
requiring the use of the hardware by simply analyzing
the data differently.

The knowledge representation used to model these
strategies should be a high-level language so that sci-
entists can develop the strategies themselves. Addi-
tionally, the language must support heuristic search
techniques, and it must be procedurally expressive
enough to represent the conditional and iterative con-
trol required for encoding arbitrarily complex strate-
gies.

The planner designs experiments based on the re-
suits of data analysis, which often contain competing
hypotheses. However, those hypotheses may change at
any time as unexpected exothermic, endothermic and
gas events are observed. Thus the planner must oper-
ate in an uncertain and changing environment. In or-
der to plan effective experiments in a changing world,
the planner must be able to incorporate asynchronous
sensor reports into its search process.

This application requires real-time control ca-
pabilities, which we define as the ability to take ac-
tions in bounded time. Our system must perform
real-time control in order to react to unexpected ther-
mal and gas events produced while heating the sam-
ple. Although the system cannot be certainin advance
when these events will occur, it must respond within a
bounded time of their detection. If the planner cannot
produce a plan within the available time, the controller



shouldstill operatewith some intelligence. Thus, it
should be able to senerate experiments reactively by
instantiating a design strategy according to heuristics
that do not involve look-ahead search.

In summary, we need to combine a mineralogical ex-
pert system with integrated sensory perception, prob-
ahilistic data analysis, planning and control. The next
sections present our architecture and its components
in terms of the AI techniques we applied to these re-
quirements.

4 The general architecture

A simplified view of our architecture is illustrated
in Figure 1, consisting of three elements: a hardware
relay, an analysis component and a control compo-
nent. The Hardware Relay is responsible for send-
ing effector commands to the hardware, and receiving
sensor reports from the hardware. The Analysis com-
ponents provide sensory perception capabilities which
acquire information via hardware sensors, and data
analysis capabilities which reason about the sensory
perception. The Control components provide experi-
ment planning and real-time control capabilities.

The system accepts scientific goals and a time limit
as input, includes both reactive and predictive control
loops, and produces analytical results. The reactive
control loop, indicated by the solid arrows, selects ac-
tions in bounded time by matching sensor readings
against condition-action "reflex" rules. The predictive
control loop, indicated by the dashed arrows, involves
sending the analysis results to the Experiment Plan-
ner. The planner searches through a space of experi-
ment design procedures for a useful follow-up experi-
ment, or for modifications to the current experiment.
A successful search produces a new experiment in the
form of condition-action rules that are passed to the
Experiment Controller.

Control f •

Figure 1: The general architecture

The integration of planning and control compo-
nents in this architecture is based on Drummond's
Entropy Reduction Engine (ERE) [2][5]. We chose
the ERE approach because it has the benefit that the
controller operates independently from the planner so
that real-time control is not dependent on the more

expensive search behavior of the planner. Our sys-
tem differs from that of ERE primarily in the style
of search used by the planner component. Our plan-
ner generates a task decomposition space, while their
planner generates a state-space search.

5 The DTA-GC system
We now discuss how this architecture has been in-

stantiated for the specific DTA-GC system by describ-
ing the AI techniques we applied to each component's
requirements.

The Hardware Relay

The job of the hardware relay is to receive sen-
sor readings and transmit effector commands to
the hardware. The DTA-GC hardware includes a
programmable Differential Thermal Analysis (DTA)
oven, two Gas Chromatographs (GC), two pressure
sensors, and four valves which control the gas flow
between the DTA and the GC. These instruments ac-
cept over 100 distinct effector commands. In the other
direction, the relay receives 9 real-time data streams
from the hardware sensors including the DTA, the GC
and the pressure signals.

All of the these instruments communicate with our

system through a General Purpose Instrument Bus
GPIB), also called the IEEE-488 Standard. Accord-
ng to Caristi [4], "It is estimated that there are more

than 4000 products which use the GPIB byte serial,
bit parallel interface system for automatic or semiau-
tomatic testing." This provides a large pool of lab-
oratory equipment that could work with our system.
To facilite such extension to different instruments, we

have developed a general LISP/GPIB interface.

Sensory Perception

The job of the sensory perception component is to
identify qualitative features (peaks and valleys) in the
temperature difference, pressure and GC signals. We
use a "Scale Space Filtering" techni.que that was de-
veloped by Witkin [13], for use m Image processing
domains. This technique detects peaks and valleys
in a curve by convolving Gaussian filters of varying
standard deviation with the input signal. As the size
of the filter increases, the convolved signal becomes
increasingly smoothed. Hence, the inflection points
that remain after applying the larger filters correspond
to the most prominent variations in the input signal.
Points of inflection at varying filter scales are then

rouped into scale-space contours. The input signal's
rst derivative is used to determine whether a given

contour is a peak or a valley, and to determine a degree
of belief associated with the contour.

This technique produces knowledge base predi-
cates of the form: (Observation _Type> <Peak>
<Belief>) The type is Exotherm, Endotherm, CO2,
H20 or Organic. The peak indicates the temperature
when the event occured. The belief indicates the prob-
ability that the observation really occured. This belief
attribute helps to address the inherent perceptual un-
certainty in our domain generated by signal/noise and
figure/background discrimination issues, as well as the
use of a sparse set of gaussian filters. See [10] for a



main unexplained. Even for simple examples, these
rules can produce many distinct explanations. This
ability to automatically and systematically construct
and evaluate so many alternative, yet viable, explana-
tions could outperform the human expert who may not
be so rigorous in exploring alternatives. This ability
to systematically generate hypotheses about geochem-
ical structure is similar to that of DENDRAL[3]. Our
system differs significantly from DENDRAL however,
since it includes closed loop control, that enables it to
design and perform its own experiments. The primary
output of Data Analysis is a set of Ezplanations called
the Result.

The Experiment Planner

The job of the experiment planner is to produce
an experiment that clarifies the ambiguous results of
a current or previous run. A "Clear Result" contains
only one explanation that explains all observations,
but this rarely occurs. More often, the result con-
tains multiple explanations that use different miner-
als to explain the same observation. Additionally, the
result often contains observations that were never ex-

plained, and events that were expected but never ob-
served. These cases represent three distinct forms of
ambiguity.

The planner searches through a task decomposition
space to generate a set of Experiment Control Rules
(ECRs) that could clarify the given ambiguities. First,
the Experiment Planner selects which ambiguities to
clarify using heuristics that consider ambiguity type
and resource availability. The planner then chooses
among hypotheses that postulate analytical and con-
trol causes for each ambiguity. The planner then
selects a strategy for proving the hypotheses. Gen-
eral strategies include: designing a second run that
"skips" uninteresting temperature intervals, modify-
ing the current run, or modifying the data analysis
procedure alone. Lower-level strategies produce spe-
cific ECRs by selecting specific temperature or pres-
sure ranges for skipping, recording or sniffing. Exper-
iment plans that do not violate resource constraints
are passed to the experiment controller.

The planner is implemented in Propel, a general-
purpose language we designed to be procedurally ex-
pressive enough to represent real-world procedures,
while maintaining the benefits of heuristic search.
Propel procedures allow subgoals and other choice

oints to be embedded within the conditional and
erative control constructs of a LISP-like language.

These procedures are used to represent our experi-
ment design strategies. The Propel interpreter gen-
erates disjunctive experiment plans by heuristically
searching through the task-decomposition space that
is defined by these strategies. This behavior is simi-

lar to the "skeletal plan instantiation _ technique used
by MOLGEN [7], with our strategies corresponding to
MOLGEN's skeletal plans. Although our representa-
tion is more procedurally expressive, the strategies in
both systems encode experiment design information.
In contrast with MOLGEN however, our system per-
forms closed loop control by actually executing the ex-
periments it designs, and analyzing their results. The

expressiveness of our language is similar to McDer-
mott's Reactive Plan Language (RPL) [11] which is
an extension of Firby's RAPS language [6]. Those
languages differ from ours however, since Propel was
designed to generate and search for plans, while RPL
and RAPS were primarily designed for reactive plan
execution.

To address our deadline management requirements,
the Planner must ensure that results are returned
within the given time limit. The planner first esti-
mates the available computation time by subtracting
an initial estimate of required execution time from the
given time limit. During simultaneous planning and
execution, this estimate of execution time is adjusted
according to the projected durations of developing ex-
periment plans. If a plan is found within the avail-
able computation time, then it is passed to the con-
troller for execution. Otherwise, the controller could
begin execution of the default experiment, or it could
reactively instantiate an experiment design strategy.
This is facilitated by the Propel strategy representa-
tion which can be instantiated in bounded time using
predetermined heuristics. This type of action repre-
sentation, which can be used by both the planner and
the controller allows for a tighter integration between
planning and execution as discussed by Hanks and
Firby [8], Beetz and McDermott [1], and McDermott
[11].

Since the planner must operate in a changing en-
vironment, we designed a mechanism called Dynamic
Dependencies that integrates asynchronous perception
and analysis into the planner's search process. This
mechanism is similar in motivation to the monitors de-
scribed by Hanks and Firby in [8], but their approach
is based more on decision theory than on dependency
analysis. With our mechanism, the planner performs
dependency analysis on the projection paths to iden-
tify external conditions on which its plans rely. The
analysis component is informed about these plan as-
sumptions so that it can notify the planner as soon as
their status changes. The planner can then adjust its
search control to favor plans that are based on new as-
sumptions instead of continuing to develop plans that
are based on obsolete assumptions. This technique
will allow us to break the typical planning system as-
sumption that the world does not change during the
planning process. This "static world assumption" does
not hold when we are planning changes to the cur-
rent experiment. Performing dependency analysis on
our procedurally expressive experiment strategies is a
difficult task. Our approach is to extend the depen-
dency analysis techniques used by gabih et al. [14] and
Kambhampati [9] to handle our procedurally expres-
sive action representation, and to fit into our context
of planning with asynchronous sensory perception.

6 Status
We have spent a significant amount of time build-

ing the DTA-GC instrument hardware itself, and the
LISP/GPIB interface. We have also focused exten-
sively on building up the mineral library used by the
Classifier, and on the development of Propel and the
Dynamic Dependency mechanism.



We now describe the implementation status of our

application in more detail in terms of three progres-
sive development levels. The first level represents our
``baseline" functionality, by providing a reactive con-
trol loop. This level requires the operation of the sen-
sory perception, experiment control, and data anal-
ysis components. At the second level, the predictive
control loop is added by introducing the Experiment
Planner. At this level, data analysis and experiment
planning operate in sequence after the current experi-
ment has completed. At the third level, all of the com-
ponents operate in parallel. The static world assump-
tion no longer holds at this level, since perception,
analysis, planning and control are all being performed
simultaneously.

1. A reactive control loop. We have demon-
strated this baseline level of functionality for the
reactive control loop of our system. In particu-
lar, the system can execute the default Experi-
ment Control Rules which heats a sample slowly
while monitoring the incomming DTA, GC and
pressure signals. If the pressure reaches a given
threshold, our system automatically reacts by
evacuating the gas into the GC for analysis, and
then it prepares for the next gas event. The oper-
ation of the sensory perception, data analysis and
experiment control components is required at this
level, so their status is described next.

The sensory perception component is imple-
mented but needs some tuning. Preliminary tests
of this component were successful and are de-
scribed further in [10]. We have also developed
a technique called "Onset Detection _. This alter-
native method identifies points where the curve
transitions from one differential equation approx-
imation to another. These points should indicate
more accurately when the underlying chemical
processes begin and end. This approach has the
potential to open up a new scientific method that
would identify mineral decomposition events in
terms of their underlying chemical processes, in-
stead of the weaker peak and valley descriptions
currently used.

The experiment controller has been imple-
mented. We have demonstrated the ability to
react to detected gas events within one second.
Since the controller is a simple rule-system, it was
straightforward to implement. However, the cur-
rent default Experiment Control Rules are rather
brittle and provide little coverage for unexpected
events. Thus, we will be developing a more robust
set of default ECRs through knowledge engineer-
ing efforts.

The data analysis component has been imple-
mented and produces explanations, but the rules
and heuristics it uses need to be tuned through
additional knowledge engineering efforts. Cap-
turing this knowledge is necessarily slow since no
one has previously performed computer analysis
of simple DTA data, let alone DTA-GC data.
Our mineral knowledge base has been completed

and includes characterizations for over 30 classes
of minerals based on over 100 experiment runs.
Eventually, we intend to address issues of mod-
eling non-linear effects of mineral combinations,
and aggregate structures such as rocks which are
composed of many samples, and the environment
which is composed of many rocks.

2. A serial predictive control loop. This second
level primarily involves the introduction of the
Experiment Planner component and the devel-
opment of better modelling and heuristic control
techniques for the data analysis component. At
this level, the planner can suggest follow-up runs
that could produce better explanations. Since the
planner still operates in sequence after data anal-
ysis at this level, the static world assumption still
holds.

The experiment planner component has been
prototyped but needs further development. In
particular, the Propel language for representing
and searching through experiment strategies is
implemented but the knowledge engineering of
these strategies has just begun. Since the DTA-
GC is a new instrument, there are no existing
strategies, and our expert will first have to de-
velop them. At this level, we also introduce dead-
line limits into the problem. The deadline man-
agement mechanism has been partially designed
but has not been completely implemented.

3. A parallel predictive control loop. At this
third level, all components operate in parallel,
so the static world assumption no longer holds.
Thus this is the first phase where the Dynamic
Dependency mechanism will be required. The
Dynamic Dependency technique was originally
designed for the state-space search approach of
the ERE reactor. We are currently re-designing
it to work for Propel's task-decomposition space
by extending gabih et al's work on dependency
analysis in Non-Deterministic Lisp [14].

7 Evaluation

Although we have not yet completed the system, we
feel it is important to focus on a clearly defined metric
that can be used to evaluate the effectiveness of our

system. We have therefore designed such a metric that
can be applied at each development level. We expect
experiments with this metric to show that the system
produces more accurate and less ambiguous results as
the development level increases.

The metric characterizes the quality of the experi-
ment results by considering how well it matches a hu-
man's analysis and how many ambiguities it contains.
We evaluate how well our system identifies minerals
and organics in a set of benchmark "unknown" min-
eral mixtures that have been provided by our scientist.
A performance level of 100 percent indicates that our
system produced exactly the same explanation as our
human expert, with no ambiguities. From this ``per-
fect" score, we subtract points for ambiguities in the



morecompletedescriptionof thesensoryperception
component.

The Experiment Controller

The Experiment controller is a rule-based system
that matches sensory enablement conditions to GPIB
effector commands. Its job is to control the laboratory
equipment in real-time accordingto a set of Experi-
ment Control Rules (ECRs), which are either provided
by the scientist or synthesized by the Experiment-
Planner.

Our controller is based on the "Reactor" and "Sit-
unfed Control Rule (SCR)" elements of Drummond's
ERE architecture [2] [5]. With this approach, the con-
troller operates in a perpetual sense-act cycle, execut-
ing rules that function as quick reflexes to provide the
"reactive" control capabilities of the system. In the
DTA-GC system, the controller must be able to react
to unexpected thermal and gas events within seconds
of their detection in order to properly record and iden-
tify them.

Although many types of low-level commands can
be sent to the DTA-GC instrument, we have defined
three abstract operations that characterize our re-
quired experiment control behavior. These commands
are: Record, Skip and Sniff. Record causes the oven to
heat up slowly for some period of time durinl$ which
data will be collected. Skip causes the oven to heat up
quickly for some period of time during which data will
not be collected. Sniff causes gas to be passed to one
of two GCs for some period of time.

The default experiment consists of two rules that
function as a set of default reflexes for the Experi-
ment Controller. The first rule says "IF (the oven
temperature is equal to *initial-temperature*) THEN
Record ". The second rules says: "IF (the oven
pressure is greater than *pressure-threshold*) THEN
Sniff _. These reflexes will produce good results in
cases when 2 hours are available and only one gas
event occurs. More complex rules are needed for more
complex experiments.

Data Analysis

In the DTA-GC system, data analysis corresponds
to generating hypotheses that postulate mineral com-
binations contained in the sample. We generate hy-
potheses through a two step method: Bayesian Clas-
sification and Heuristic Search. The Classifier uses
a Bayes tree to probabilistically match observations
against events associated with known minerals in its
library. The library contains knowledge of thermal
and gas evolution events for over 30 primary minerals
including clays, carbonates and salts.

The Classifier defines a Bayes tree for each mineral.
Each child of a root mineral node defines a process
node corresponding to a phase transition or chemical
reaction that is caused by heating the mineral. Each of
these process nodes has a terminal child node which
corresponds to a specific mineral event. These rnin.
eral event nodes test observations for membership in
a class of endotherm, exotherm, or gas events that oc-
cur within a given temperature range. The classifier

uses the probabilities generated during sensory per-
ception to assign probabilities to the terminal nodes
in the Bayes trees. Using the conditional probability
links from mineral-event nodes to process nodes and
from process nodes to mineral nodes, a standard Bayes
tree propagation algorithm [12] is used to deduce the
propabilities of all non-terminal nodes. The minerals
are then sorted according to their associated degrees
of belief.

The Classifier produces knowledge base predicates
of the form: (Match <Observation> <mineral-event>
<belief>). This predicate indicates that a given obser-
vation is an instance of a particular class of mineral
decomposition events. The belief attribute helps to
address domain uncertainty by indicating the prob-
ability that the observation really is an instance of
mineral event.

Two issues arise with the output of the Classifier.
First, since the mineral events in our library may over-
lap, the Classifier may match a single observation to
multiple mineral events, thus increasing the belief in
multiple minerals based on the same piece of evidence.
For example, both types of clays, montmorillonite and
kaolinite, may match a single observed exotherm at
1000 degrees. The second issue is that each mineral
model will only account for a subset of the observa-
tions. Thus another procedure is required to provide

lobal explanations for the entire set of observations.
order to address these two issues, we pass the Clas-

sifter output to the Explainer, which constructs sys-
tematic explanations for the set of observations as a
whole.

The Explainer is a general purpose inference engine
that uses the local matches provided by the Classi-
fier to construct e_planations (a.k.a. hypotheses) for
the set of observations as a whole. Each explanation
contains a set of distinct mappings from each obser-
vation to a unique mineral decomposition event. This
is done by reasoning about the matches provided by
the Classifier. The Classifier can match a single ob-
servation to two different mineral events, or it can
match a single mineral event to two different observa-
tions. Each of these cases produces disjunctive expla-
nations. Thus, in our above example, one explanation
will match the exotherm to the kaolinite decomposi-
tion event while another explanation matches it to the
montmorillonite decomposition event. More disjunc-
tion is introduced to model cases where an observation
is left unexplained.

The Explainer searches through this space of alter-
native explanations with the aid of a heuristic con-
trol function that combines multiple scoring dimen-
sions. This heuristic is a form of Occam's Razor which
prefers explanations that minimize the number of min-
erals used, the number of unmatched observations,
and the number of unobserved events, while maximiz-
ing the combined probabilistic beliefs of the observa-
tions and the mineral events.

The Explainer currently uses two very simple hy-
pothesis generation rules. The first rule defines a
search space that matches each set of observations to
a distinct set of classifications. The second rule com-

pletes the search space by allowing observations to re-



formofcompetingexplanations,unmatchedobserva-
tions, and unobserved events that were expected. Al-
though we currently measure our results against those
of a human expert, our system could eventually out-
perform humans due to the systematicity and com-
pleteness of our automated approach.

We have performed some preliminary tests by run-
ning the data analysis component on a variety of mix-
tures. The best explanations were produced when the
thermal decomposition processes of minerals in the
mixture did not interact. In some of these cases, our
system even suggested valid new combinations of min-
erals that were not hypothesized by our domain ex-
perts. On the other hand, the performance degrades
when the identifying features are masked or shifted by
chemical interactions between mineral processes. This
issue of recognizing non-linear mineral combination ef-
fects is a focus of our future work.

8 Conclusion

We have described an architecture designed to au-
tonomously control a new geochemistry instrument.
The system functions as an instantiation of a general
class of autonomous scientific instruments that inte-
grate sensory perception, data analysis, experiment
planning and experiment control. We have described
how these components function and how they interact
to provide autonomous control of the DTA-GC instru-
ment.

We have developed a LISP/GPIB interface and the
Propel language as general tools that could be useful
for many applications. Further, the architecture will
be used as a model for other intelligent instruments.
In addition to these AI contributions, we have pro-
vided a contribution to soils analysis by connecting
a Differential Thermal Analyzer to a Gas Chromato-
graph for the first time. In fact, computer assisted
analysis of DTA curves is itself a new and potentially
useful scientific contribution. Additionally, our use of
scale-space filtering to analyze DTA curves has been
published in the chemistry literature [10].

The system we have described represents a syn-
ergy between AI applications and AI techniques. Our
application has stimulated the development of tech-
niques that are useful for the integration of perception,
planning and control. These techniques will in turn al-
low us to tackle new real-world applications that are
even more ambitious.
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